Face Recognition Vendor Test
Ongoing

Face Recognition Quality Assessment

Application Programming Interface (API)
VERSION 1.0.1

Patrick Grother

Mei Ngan

Kayee Hanaoka

Information Access Division
Information Technology Laboratory

Contact via frvt@nist.gov

September 9, 2020

NST

National Institute of
Standards and Technology
U.S. Department of Commerce

mailto:frvt@nist.gov

FRVT Quality Assessment

Revision History

Date Version Description
April 23, 2019 1.0 Initial document
September 9, 2020 1.0.1 Update link to General Evaluation Specifications document

NIST API Page 1 of 5

O oo NO U1 b

10
11
12
13
14
15
16

17
18
19

20
21

22

FRVT Quality Assessment

Table of Contents

Lo FRVT QALY ettt ettt st e st e st e s a e e st e e shteeabeesb e e s b e e e a b e ea ke e sate et e e sheeeabeenht e e beenhee e beenate e beenateebeenas 3
1.1. Yol] o= ISP P PP PP R RRRORPRORPRPIRE 3
1.2 General FRVT Evaluation SPeCIfiCatioNScccuieiciiiiciiee ettt e st e et e e s aa e e e tre e e eabae e eaaaeeenteeeentaeesnnns 3
1.3. THMIE LIMIIES ettt ettt et et e st e e s a e e st e e s abe e s be et aesaaeesbeesabeesaaesabeesaeeenteesbteenbeenaseenbaesaseenbeesnseensaenns 3

2. Data structures SUPPOITING ThEe APlc...ei ittt e e et e e ette e e st e e e e tae e s eateeestteeeeataseeasaaesssbeeeassaeesasasesnsseesastasennsens 3

3. Implementation LIBrary FIIENAMEcc..iii it et e e et e e et e e e tt e e e eate e e ebaaeessteeeeataeesasaeeesbeeeantaeeansees 3

B\ o Y 1= 1 Tor- 14 [o RSP UPSPUPRRt 3
4.1. o [T To [T gl OO PO UURRUSPRN 3
4.2. [N T 01T o I Lol PP PPPUPPPN 4
4.3. Y o PO OO PUPUPPTPPPPPINN 4

List of Tables

Table 1 — Processing time limits in milliseconds, per 640 X 480 iIMAZEccccvueeiruereiiieeeeiireeeeeeseeesseteeeseeeesreeeessreeesseneesseeean 3

TABIE 2 = INIHIAIIZATION 1ottt sttt et s et bt e s a e e e bt e sa b e e bt e sab e e s bt e sab e e s b e e e bt e shbeebeenate e beesareeree e 4

Table 3 — Quality scalar from @ SINGIE IMAEE ...ccveiuiiiieeee et e sa e st s b e st e e bt e e sbeesabe s beesasesbeenas 5

NIST

API

Page 2 of 5

23

24
25

26
27

28
29
30
31
32

33

34
35
36
37

38
39

40

41
42

43

44
45
46
47
48
49
50
51

52

53
54

55

56
57

FRVT Quality Assessment

1. FRVT Quality

1.1. Scope

This document establishes an application programming interface (API) for evaluation of face recognition (FR)
implementations submitted to NIST's Ongoing Face Recognition Vendor Test (FRVT) Face Recognition Quality Assessment
(FRQA) track. Separate APl documents are/will be published for current and future additional tracks to FRVT.

1.2. General FRVT Evaluation Specifications

General and common information shared between all Ongoing FRVT tracks are documented in the FRVT General
Evaluation Specifications document - https://pages.nist.gov/frvt/api/FRVT_common.pdf. This includes rules for
participation, hardware and operating system environment, software requirements, reporting, and common data
structures that support the APIs.

1.3. Time limits

The elemental functions of the implementations shall execute under the time constraints of Table 1. These time limits

apply to the function call invocations defined in section 3. Assuming the times are random variables, NIST cannot regulate
the maximum value, so the time limits are 90-th percentiles. This means that 90% of all operations should take less than
the identified duration.

The time limits apply per image.

Table 1 - Processing time limits in milliseconds, per 640 x 480 image

Function
scalarQuality() 5000 (1 core)

2. Data structures supporting the API

The data structures supporting this APl are documented in the FRVT - General Evaluation Specifications document, with
corresponding header file named frvt_structs.h published at https://github.com/usnistgov/frvt.

3. Implementation Library Filename

The core library shall be named as libfrvt_quality_<provider>_<sequence>.so, with
e provider: single word, non-infringing name of the main provider. Example: acme
e sequence: a three digit decimal identifier to start at 000 and incremented by 1 every time a library is sent to
NIST. Example: 007

Example core library names: libfrvt_quality_acme_000.so, libfrvt_quality_mycompany_006.so.
Important: Public results will be attributed with the provider name and the 3-digit sequence number in the submitted
library name.

4. API Specification

FRVT Quality participants shall implement the relevant C++ prototyped interfaces in Section 4.3 . C++ was chosen in order
to make use of some object-oriented features.

4.1. Header File

The prototypes from this document will be written to a file named frvt_quality.h and will be available to implementers at
https://github.com/usnistgov/frvt.

NIST API Page 3 of 5

https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://github.com/usnistgov/frvt
https://github.com/usnistgov/frvt

58

59
60

61

62

63
64

65
66
67
68
69

70

71
72

73

FRVT Quality Assessment

4.2, Namespace

All supporting data structures will be declared in the FRVT namespace. All APl interfaces/function calls for this track will
be declared in the FRVT QUALITY namespace.

4.3. API

4.3.1. Interface

The software under test must implement the interface Interface by subclassing this class and implementing each
method specified therein.

C++ code fragment Remarks

class Interface

{
public:

virtual ReturnStatus initialize(
const std::string &configDir) = 0;

virtual ReturnStatus scalarQuality(
const Image &face,
double &quality) = 0;

5. static std::shared ptr<Interface> getImplementation(); Factory method to return a managed
pointer to the Interface object. This
function is implemented by the submitted
library and must return a managed pointer
to the Interface object.

6. |};

There is one class (static) method declared in Interface. getImplementation () which mustalso be implemented
by the implementation. This method returns a shared pointer to the object of the interface type, an instantiation of the
implementation class. A typical implementation of this method is also shown below as an example.

C++ code fragment Remarks

#include "frvt quality.h"
using namespace FRVT QUALITY;
NullImpl:: NullImpl () { }
NullImpl::~ NullImpl () { }
std::shared ptr<Interface>

Interface::getImplementation ()

{
return std::make shared<NulllImpl>();

}

// Other implemented functions

4.3.2. Initialization

The NIST test harness will call the initialization function in Table 2 before calling any of the quality assessment functions of
this API. This function will be called BEFORE any calls to fork () 1 are made.

Table 2 - Initialization

Prototype ReturnStatus initialize(
const string &configDir); Input

Description This function initializes the implementation under test. It will be called by the NIST application before any calls the
quality assessment functions of this API. The implementation under test should set all parameters. This function

Lhttp://man7.org/linux/man-pages/man2/fork.2.html

NIST API Page 4 of 5

74

75
76
77
78
79
80

81

82

FRVT Quality Assessment

will be called N=1 times
fork ().

by the NIST application, prior to parallelizing M >= 1 calls to any other functions via

Input Parameters | configDir

A read-only directory containing any developer-supplied configuration parameters or run-
time data files. The name of this directory is assigned by NIST, not hardwired by the
provider. The names of the files in this directory are hardwired in the implementation and
are unrestricted.

Output
Parameters

none

Return Value

See General Evaluation Specifications document for all valid return code values.

4.3.3.

Scalar Quality Assessment from a Single Image

The functions of Table 3 supports quality assessment of a single face image. Here, quality scores should represent
predictors of recognition accuracy. The default use-case is during enrollment — checking that an image is suitable to
become the reference in an authoritative database. A second use-case is quality being used during a verification or
identification transaction to select the image most likely to match the reference image. The reference image is assumed
to be unavailable for matching (e.g. because it is on a remote server). In both cases, the quality algorithm should express
whether the input would match a canonical frontal portrait image (i.e. one that conforms to the ISO/ICAO standard).

Table 3 — Quality scalar from a single image

Prototypes ReturnStatus scalarQuality(
const Image &face, Input
double &quality); Output

Description | This function takes an image and outputs a quality scalar. The algorithm will be supplied with a label describing the type
of image via Image::Label, and it is up to the implementation to alter its behavior based on the image type (e.g., ISO (full-
frontal) versus Wild (off-angle).

Input face Single face image

Parameters

Output quality For each image in the faces vector, an assessment of image quality as described below:

Parameters scalarQuality(): overall quality assessment

Legal quality values are

[0,100] - The value should have a monotonic decreasing relationship with false non-match
rate anticipated for this sample if it was compared with a pristine image of the same
person. So, a low value indicates high expected FNMR.

A value of -1.0 indicates a failed attempt to calculate a quality score or the value is
unassigned.

Return Value

See General Evaluation Specifications document for all valid return code values.

NIST

API Page 5 of 5

https://pages.nist.gov/frvt/api/FRVT_common.pdf
https://pages.nist.gov/frvt/api/FRVT_common.pdf

	1. FRVT Quality
	1.1. Scope
	1.2. General FRVT Evaluation Specifications
	1.3. Time limits

	2. Data structures supporting the API
	3. Implementation Library Filename
	4. API Specification
	4.1. Header File
	4.2. Namespace
	4.3. API
	4.3.1. Interface
	4.3.2. Initialization
	4.3.3. Scalar Quality Assessment from a Single Image

